Multifunctional structural supercapacitor composites based on carbon aerogel modified high performance carbon fiber fabric.
نویسندگان
چکیده
A novel multifunctional material has been designed to provide excellent mechanical properties while possessing a high electrochemical surface area suitable for electrochemical energy storage: structural carbon fiber fabrics are embedded in a continuous network of carbon aerogel (CAG) to form a coherent but porous monolith. The CAG-modification process was found to be scalable and to be compatible with a range of carbon fiber fabrics with different surface properties. The incorporation of CAG significantly increased the surface area of carbon fiber fabrics, and hence the electrochemical performance, by around 100-fold, resulting in a CAG-normalized specific electrode capacitance of around 62 F g(-1), determined by cyclic voltammetry in an aqueous electrolyte. Using an ionic liquid (IL) electrolyte, the estimated energy density increased from 0.003 to 1 Wh kg(-1), after introducing the CAG into the carbon fiber fabric. 'Proof-of-concept' multifunctional structural supercapacitor devices were fabricated using an IL-modified solid-state polymer electrolyte as a multifunctional matrix to provide both ionic transport and physical support for the primary fibers. Two CAG-impregnated carbon fabrics were sandwiched around an insulating separator to form a functioning structural electrochemical double layer capacitor composite. The CAG-modification not only improved the electrochemical surface area, but also reinforced the polymer matrix surrounding the primary fibers, leading to dramatic improvements in the matrix-dominated composite properties. Increases in in-plane shear strength and modulus, of up to 4.5-fold, were observed, demonstrating that CAG-modified structural carbon fiber fabrics have promise in both pure structural and multifunctional energy storage applications.
منابع مشابه
Biomass-Derived Carbon Fiber Aerogel as a Binder-Free Electrode for High-Rate Supercapacitors
A flexible carbon fiber aerogel with a very high surface area for supercapacitor application is reported by carbonization and chemical activation of low-cost natural cotton with KOH. The carbon fibers in the aerogel present as a twisted and tubular structure. Depending on the amount of KOH used in the activation process, the specific surface area of aerogels ranges from 1536 to 2436 m g−1, whil...
متن کاملOptimization of process parameters for electrophoretic deposition in CNTs/carbon fiber hybrid composites
Carbon nanotubes (CNTs) have attracted a great deal of interest in the development of high-performance engineering composites, due to their exceptional physical, mechanical, electronic and thermal properties. Incorporation of CNTs into polymer has shown great improvements in the functional property, however, the enhancement of the mechanical property was insignificant compared with that of micr...
متن کامل1D Ni-Co oxide and sulfide nanoarray/carbon aerogel hybrid nanostructures for asymmetric supercapacitors with high energy density and excellent cycling stability.
The fabrication of supercapacitor electrodes with high energy density and excellent cycling stability is still a great challenge. A carbon aerogel, possessing a hierarchical porous structure, high specific surface area and electrical conductivity, is an ideal backbone to support transition metal oxides and bring hope to prepare electrodes with high energy density and excellent cycling stability...
متن کاملEffect of Organic and Inorganic Matrix on the Behavior of FRP-Wrapped Concrete Cylinders
There is an increased use of fiber reinforced polymer composites (FRPC) in a wide area of engineering fields for various reasons including, ease of transportation and installation, high strength to weight ratio and favorable durability in different conditions. On the other hand, the use of this material as confining shells has been an interesting matter for retrofit, strengthening and construct...
متن کاملCarbon black-intercalated reduced graphene oxide electrode with graphene oxide separator for high-performance supercapacitor
We present a general study on a high performance supercapacitor based on intercalated reduced graphene oxide with carbon black nanoparticles. Graphene oxide sheets were synthesized by oxidation and exfoliation of natural graphite and were reduced using hydroiodic acid in the presence of carbon black nanoparticles. Graphene paper was fabricated by one-step procedure via simultaneous reducing and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS applied materials & interfaces
دوره 5 13 شماره
صفحات -
تاریخ انتشار 2013